Newswire (Published: Wednesday, February 17, 2021, 1:05:00 PM CST, Received: Wednesday, February 17, 2021, 1:05:03 PM CST)

Word Count: 1237

MILTON KEYNES, England and LOS ANGELES, Feb. 17, 2021 /PRNewswire/ -- New research from a multi-national, cross-disciplinary team of scientists from Medical Detection Dogs (MDD) in the UK, the Prostate Cancer Foundation (PCF), Massachusetts Institute of Technology (MIT), Johns Hopkins University – and a friendly pair of specially trained cancer-sniffing dogs at MDD – has scientifically validated that a dog's nose may hold the key to prostate cancer detection: a more accurate, non-invasive early diagnostic tool able to differentiate between potentially lethal high Gleason Grade cancers and low-grade, less dangerous cancers.

Medical Detection Dog Florin accurately detects prostate cancer from a urine sample. New research validates dogs' ability to detect and distinguish high-grade prostate cancers and points the way toward a more accurate, machine olfaction diagnostic tool. (Photo credit MDD/Neil Pollock)

Observations dating back to the mid-2000s have shown that dogs can accurately sniff out early prostate and other cancers with impressive accuracy, but researchers have not known exactly what elements of scent the dogs were detecting and how they were processing the information. In a new paper published today in PLOS ONE, for the first time researchers combined three approaches – canine olfaction detection, artificial intelligence (AI)-assisted chemical analysis of the volatile organic compounds (VOCs) in urine samples, and microbial analysis of the same urine samples of men who underwent biopsy for suspected prostate cancer.

A four-year-old Labrador and a seven-year-old Vizsla were trained to detect the odor of prostate cancer in urine samples collected from patients with the disease, including Gleason 9 prostate cancer – the most lethal tumors that would benefit the most from early detection.

Results showed the dogs' olfaction system was 71 percent sensitive – the rate at which the dogs correctly identified positive samples – and 70-76% specific – the rate at which the dogs correctly ignored negative samples including those with other diseases – when detecting Gleason 9 prostate cancer from blinded samples. The dogs also correctly identified when 73% of blinded patient samples did not have the disease. This compares favorably to the most commonly used prostate cancer test, the PSA blood test, and demonstrates how a new screening tool based on the dog's nose could support the PSA test and improve early diagnosis, leading to better health outcomes and saving lives. 

This is the first truly controlled study – both human researchers and dogs were double-blinded on which samples were from cancer patients versus otherwise healthy patients. The findings demonstrate that canines can be trained to detect the most aggressive and lethal form of prostate cancer from the VOCs.  While previous studies using analytical techniques such as Gas Chromatography-Mass Spectrometry (GC-MS) to identify individual molecules performed well under tightly controlled laboratory conditions, this new work takes into account the dynamically changing background odor environment of the real world. Identification of the molecules in the odor could lead to the development of an artificial dog nose that detects prostate cancer in urine in much the same way biosensing machines known as machine olfactors are beginning to learn from the way trained dogs sniff out drugs and explosives, which also have unique molecular odorant signatures.

Dr. Claire Guest, Co-Founder and Chief Scientific Officer of Medical Detection Dogs and lead study author, said, "This study showed that a dog's nose could hold the key to an urgently needed, more accurate, and non-invasive method of early prostate cancer diagnosis. Specialist-trained cancer detection dogs, Florin and Midas, detected extremely aggressive prostate cancers quickly and accurately from urine samples, even discriminating these against urine from patients that had other diseases of the prostate. This additional information could support the PSA and would provide earlier, non-invasive, sensitive detection of clinically aggressive prostate cancers that would most benefit from early diagnosis, simply from a urine sample. This has enormous potential and in time the ability of the dogs' nose could be translated to an electronic device."

"One of the main points of this work is that the dogs aren't just detecting prostate cancer, they are detecting the most lethal prostate cancers – those that would benefit the most from early detection. Results could now lead to the future development of a more sensitive and specific prostate cancer diagnostic beyond the current PSA test," said Jonathan W. Simons, MD, PCF president and CEO, and study co-author. "With compelling evidence of this approach, we are planning larger-scale studies using canine olfaction, urinary VOCs and urinary microbiota profiling to develop a machine olfaction diagnostic tool, a 'robotic nose' if you will, that may ultimately take the form of a smartphone app of the future."

"Imagine a day when smartphones can send an alert for potentially being at risk for highly aggressive prostate cancer, years before a doctor notices a rise in PSA levels. The incredible work of these dogs is critical as we advance this program to develop an improved method of early prostate cancer diagnosis. Equally important is that men can be citizen scientists and contribute to the bio bank that will help us eventually solve this problem that is urgently needed. Once we have built the machine nose for prostate cancer, it will be completely scalable to other diseases," added Dr. Andreas Mershin, physicist and research scientist, The Center for Bits and Atoms, Massachusetts Institute of Technology, and study co-author.  

Other study contributors included: Department of Pathology and Department of Urology, James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore MD; Cambridge Polymer Group, Cambridge, MA; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX; Imagination Engines, St. Charles, MO; and, Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA. To access the published study, please visit

This work was supported by a Prostate Cancer Foundation research sponsorship to the MIT Label Free Research Group at the CBA, Johns Hopkins University School of Medicine, and to Medical Detection Dogs and by National Cancer Institute of the National Institutes of Health Award SCICA245675.

About Medical Detection Dogs
Medical Detection Dogs is the world-leading organisation for research into canine olfactory diagnostics.  We train dogs to detect the odour of disease with the aim of developing faster, more efficient and less invasive diagnostics that lead to better patient outcomes. Our Bio Detection research includes cancer, neurological disease and bacterial infections and has the potential to benefit millions.  We already apply what we know about the science of canine olfaction to benefit people by training Medical Alert Assistance Dogs, which help individuals manage complex, life-threatening medical conditions. 

About the Prostate Cancer Foundation
The Prostate Cancer Foundation (PCF) is the world's leading philanthropic organization dedicated to funding life-saving prostate cancer research. Founded in 1993 by Mike Milken, PCF has raised more than $865 million in support of cutting-edge research by more than 2,085 research projects at 244 leading cancer centers and universities in 22 countries around the world. Thanks in part to PCF's commitment to ending death and suffering from prostate cancer, the death rate is down by 52% and countless more men are alive today as a result. PCF research now impacts more than 70 forms of human cancer by focusing on immunotherapy, the microbiome, and food as medicine. Learn more at

Connect with PCF: FacebookTwitter | LinkedIn
Connect with MDD: Facebook | Twitter | Instagram






Staci Vernick


Kathy Vincent

Gemma Butlin
(011) 44 (0) 1296 655 888 

Abigail Abazorius


Visit (PRNewsFoto/Prostate Cancer Foundation) (PRNewsFoto/Prostate Cancer Foundation)

Cision View original content to download multimedia:

SOURCE Prostate Cancer Foundation


Massachusetts Institute of Technology
Johns Hopkins University
Johns Hopkins University School of Medicine
University of Texas At El Paso
Harvard Medical School
The Massachusetts General Hospital


      Medical Specialty Equipment
            Urological Equipment
      Medical Devices
            Specialty Chemistry and Diagnostics Devices
      Medical Device Manufacturing
            Medical Specialty Equipment
                  Urological Equipment
            Medical Devices
                  Specialty Chemistry and Diagnostics Devices
      Computers and Networking
                  Handhelds and Smartphones


Milton Keynes
Los Angeles
North America
Northern Europe
United Kingdom
United States
Baltimore County
Saint Charles
El Paso


Science and Technology
      Scientific Research
            Medical Research
                  Clinical Outcomes
            Artificial Intelligence
            Electronics Technology
            Healthcare Technology
            Robotics Technology
Health and Wellness
      Medical Conditions and Diseases
                  Prostate Cancer
            Men's Health Issues
                  Prostate Cancer
            Urological Diseases
      Health Sciences
            Healthcare Technology
            Medical Research
                  Clinical Outcomes
      Medical Specialties and Practices